飞555棋牌游戏

飞555棋牌游戏

EEPW飞555棋牌游戏 > 电源与新能源 > 业界动态 > SiC MOSFET应用技术在雪崩条件下的鲁棒性评估

SiC MOSFET应用技术在雪崩条件下的鲁棒性评估

作者:意法半导体Salvatore La Mantia Mario Pulvirenti Angelo G. Sciacca Massimo Nania时间:2021-08-04来源:电子产品世界收藏
编者按:​本文将探讨如何在雪崩工作条件下评估SiC MOSFET的鲁棒性。MOSFET功率变换器,特别是电动汽车驱动电机功率变换器,需要能够耐受一定的工作条件。如果器件在续流导通期间出现失效或栅极驱动命令信号错误,就会致使变换器功率开关管在雪崩条件下工作。因此,本文通过模拟雪崩事件,进行非钳位感性负载开关测试,并使用不同的SiC MOSFET器件,按照不同的测试条件,评估技术的失效能量和鲁棒性。


本文引用地址:http://www.ghys182.cn/article/202008/416678.htm

引语

能效和可靠性是所有电子功率变换器必备的主要特性。在与人类社会活动和生态环境保护相关的应用领域,例如,交通、工业、能源转换等,标准硅基功率开关管已被SiC MOSFET取代,因为 SiC MOSFET在电流密度/芯片面积、击穿电压、开关频率、工作温度方面表现更出色,可缩减功率变换器的体积和尺寸,同时提高能效[1],[2]

采用最新一代SiC MOSFET设计功率变换器应该认真考虑器件的可靠性和鲁棒性,避免让异常失效现象破坏系统的整体安全性[3],[4]。短路和雪崩是可能导致电源转换器开关管严重失效的异常事件[5],[6]

短路事件可能是错误和失控的工作条件引起的,例如,器件开关顺序命令出错。当漏源电压VDS超过击穿电压额定值时,会发生雪崩事件[7]

对于dvDS/dt 和 diD/dt变化率很高的应用,在开关瞬变期间,VDS可能会超过击穿电压额定值。高瞬变率结合变换器布局固有的寄生电感,将会产生电压尖峰,在极端情况下,导致雪崩事件发生[7],[14],[16]。SiC MOSFET可能会出现这些工作条件,分立器件的dvDS/dt可能轻松超过100V/ns,diD/dt超过10A/ns[1],[21]

 另一方面,电机功率变换器也是一个值得关注的重点,例如,电动汽车的驱动电机逆变器、工业伺服电机等,这些应用的负载具有典型的电感特性,要求功率开关还必须兼备续流二极管的功能。因此,在二极管关断时,其余器件将传导负载电流,进行非钳位感性负载开关操作,工作于雪崩状态是无法避免的[13]飞555棋牌游戏。在这种雪崩期间,除过电压非常高之外,高耗散能量也是一个需要考虑的重要问题,因为器件必须耐受异常的电压和电流值。

采用失效检测算法和保护系统,配合同样基于“可靠性”标准的变换器设计方法,是很有必要的[20]。但是,除了安全保护和最佳设计规则外,功率开关管还必须强健结实,即具有“鲁棒性”,才能耐受某种程度的异常工作条件,因为即便超快速检测算法和保护系统也无法立即发挥作用[19]。SiC MOSFET的雪崩问题已成为一个重要的专题,由于该技术尚未完全成熟,因此需要进行专门的研究[7]-[13]

本文的目的是分析SiC MOSFET在雪崩工作条件下的鲁棒性。为了验证鲁棒性分析结果,我们做了许多实验。最后,我们介绍了器件在不同的测试条件下的鲁棒性。

image.png

(a)

image.png

(b)

图1:半桥转换器桥臂:(a)简化框图,(b)包括主要寄生元件的等效电路。

雪崩事件

通常来说,雪崩事件只有在器件达到击穿电压时才会发生。在正常工作条件下,凡是设置或要求高开关频率的应用都会发生这种现象。

以基于半桥转换器的应用为例,让我们详细解释一下雪崩现象。

图1(a)是一个简化的半桥转换器电路原理图,电路中有两个SiC MOSFET开关管,分别用QH和QL表示,除开关管外,还有一个感性负载;图1(b)是上面电路的等效电路图,最重要的部分是主要寄生元件,特别是代表电源回路等效寄生电感的LDH,LSH,LDL和LSL,电源回路是指连接+ DC电路(VDD)与QH漏极,QH源极至QL漏极,QL源极至-DC电路的电源轨。此外,LGH,LGL是QH和QL的栅极-源极路径信号回路的等效寄生电感。考虑到HiP247封装分立器件有三或四个引线,上面的寄生电感中包含SiC MOSFET焊线和引线的寄生电感,详细信息参见[15],[16]。同样重要的是,还要考虑SiC MOSFET的寄生电容CGS,CDS和CGD,这些参数是漏极-源极电压VDS的函数[21]

飞555棋牌游戏不难理解在下面两个案例的极端工作条件期间产生的电压尖峰:

1)    有源器件导通,无源器件的体二极管关断

飞555棋牌游戏2)    有源器件关断,无源器件的体二极管导通

用1200V,25mΩ,HIP247-4L封装的SiC MOSFET分立器件,按照图1的方案做实验测试,描述瞬变在什么情况下被定义为极端工作条件。为简单起见,将QL视为有源器件,它由适合的栅极驱动器电路控制;QH是无源器件,用作续流二极管,并且通常在相关终端施加-5V的恒定负栅极-源极电压。

通过分析图2的实验结果,可以知晓案例1)的极端工作条件。

image.png

图 2:在850V, 130A,QH 体二极管关断时,VGS, ID 和VDS的典型波形。

本节重点介绍在QL导通时QH体二极管的“反向恢复”过程。测试条件是175°C,VDD=850V, ID=130A。SiC MOSFET的反向恢复过程是一个重要的课题,许多人都在研究这种现象。软恢复和硬恢复模式受载流子寿命、掺杂分布、裸片面积等因素影响。从应用角度来看,反向恢复特性主要与正向电流大小ID及其变化率diD/dt和 工作温度有关。图2显示了变化速率12A/ns 的ID引起的QH体二极管硬恢复特性。由于结耗尽非常快,漏极-源极电压VDS以最快的速度上升。在diD/dt 和 dirr/dt与寄生电感的综合作用下,尖峰电压现象严重,并且在VDS波形上看到振荡行为。另外,VGS波形出现明显振荡,应钳制该电压,以避免杂散导通。

飞555棋牌游戏快速恢复用于描述恢复的效果,概念定义详见文献。

通过优化转换器电路板布局,将寄生电感降至非常低,可以限制在电流变化率非常高的关断期间产生的电压尖峰,从而最大程度地利用SiC MOSFET的性能。

图3的实验测试结果解释了案例2)的极端工作条件。图中所示是在室温(25°C),850V,130A条件下QL“关断”时的相关参数波形。因为器件采用HIP247-4L封装,3.3Ω的栅极电阻Rg加快了关断瞬变,并且VDS的峰值非常高(约1550V)。

image.png

图 3:在850V, 130A条件下关断QL,VGS, ID, VDS 和 Poff的典型波形。

通过进一步降低Rg阻值提高关断速度,将会引发雪崩事件,不过,在本实验报告中没有达到雪崩状态。

飞555棋牌游戏但是,除极端工作条件外,元器件失效也会导致雪崩事件。

以前文提到的图1半桥转换器为例,当QH续流二极管失效,致使器件关断时,负载电流必须在关断瞬变期间流经互补器件QL,这个过程被称为非钳位感性负载开关UIS。在这个事件期间,器件必须承受某种程度的能量,直到达到QL击穿极限值为止。

这种失效机制与临界温度和热量产生有关。SiC MOSFET没有硅基器件上发现的其它失效模式,例如,BJT闩锁。在条件下的雪崩能量测试结果被用于定义SiC MOSFET的鲁棒性。

图4(a)和图4(b)是SiC MOSFET的UIS测试结果。这些测试是在图1无QH的配置中做的,测试条件是VDD=100V, VGS=-5/18V, RGL=4,7Ω, L=50H, Tc=25°C,下一章详细解释这样选择的原因。

图4(a)所示是前三次脉冲测试。QL正在传导电流,在第一个脉冲时关断,如图中蓝色的VGS,VDS和ID的波形所示,有过电压产生,VDS略低于1500V,但器件没有雪崩。在增加脉冲周期后,如图中绿色波形所示,电流ID达到5A,器件开始承受雪崩电压。再重复做一次UIS测试,如黑色波形所示,电流值变大,但由于负载电感器较小,直到电流值非常大时才达到失效能量。

image.png

(a)

image.png

(b)

图4:UIS实验,(a)雪崩过程开始时的波形;(b)施加最后两个脉冲时的波形。

飞555棋牌游戏图4(b)所示是最后一种情况的测试结果。蓝色波形是在一系列单脉冲后,器件失效前倒数第二个脉冲产生的波形,从图中可以看到,器件能够处理关断瞬变,耐受根据下面的雪崩能量公式(1)算出的约0,7J雪崩能量,最大漏极电流为170A,雪崩电压平均值为1668V。

image.png

红色波形是在施加最后一个脉冲获得的失效波形,这时器件不再能够耐受雪崩能量,并且在t *时刻发生失效,漏极电流开始骤然增加。

鲁棒性评估和雪崩测试

飞555棋牌游戏我们用三组1200V SiC MOSFE做了UIS测试,表1列出了这三组器件的主要数据。

5(a)所示是测试等效电路图,5(b)所示是相关实验装置。QL是待测器件(),测试目标是分析的关断特性。

image.png

image.png

(a)

image.png

(b)

图5:UIS实验装置: (a)等效电路, (b) 实验台

设置A,B,C三种测试条件;施加周期递增的单脉冲序列,直到待测器件失效为止。

VDD=100V, VGS=-5/18V

1,   vs RGL=4,7Ω, 10Ω, 47Ω, at L=50uH, Tc=25°C

2,   vs L=50uH, 1mH,at RGL=4,7Ω, Tc=25°C

3,   vs Tc=25°C,90°C, 200°C, at L=50uH, RGL=4,7Ω

为了便于统计,从D1,D2和D3三组器件中分别抽出五个样品,按照每种测试条件各做一次UIS实验,测量和计算失效电流和失效能量,参见图6,图7和图8。

图6(a)所示是从SiC MOSFET D3中抽出的一个典型器件,按照测试条件“A”做UIS测试的VDS 和ID失效波形。

image.png

(a)

image.png

(b)

图6:UIS对RG最终测试结果:(a) 一个D3样品的VDS和ID典型值;(b)平均失效能量EAV

为了清楚起见,只给出了RG =4.7Ω和47Ω两种情况的波形。我们观察到,失效电流不受RGL的影响。图6(b)显示了D1,D2和D3三组的平均EAV

注意到EAV失效能量略有降低,可忽略不计,因此,可以得出结论,在UIS测试条件下,这些SiC MOSFET的鲁棒性与RG无关。

图7(a)和(b)所示是按照测试条件B,在L=50H 和1mH时,各做一次UIS测试的失效波形,为简单起见,只从SiC MOSFET D3中抽取一个典型样品做实验。

在提高负载电感后,电感器储存的能量增加,因此,失效电流减小。

image.png

(a)

image.png

(b)

image.png

(c)

图7:UIS对L最终测试结果 (a) 在L=50H时, D3样品的VDS 和 ID 典型值 (b)在L=1mH时, D3样品的VDS 和 ID 典型值 (c) 平均失效能量EAV.

图7(c)显示了D1,D2和D3的平均EAV与L的关系,可以观察到,器件D3的失效能量EAV随着负载电感提高而显著提高,而D1和D2的EAV则略有增加。通过分析图8可以发现这种行为特性的原因。图8是根据等式(2)计算出来的结温Tj的分布图:

image.png

其中:T0是起始温度,PAV是平均脉冲功率,Zth是芯片封装热阻,本次实验用的是不带散热器的TO247-3L封装。

电感器储存能量的大小与电感值有关,储存能量将被施加到裸片上,转换成热能被耗散掉。如图7(a)所示,低电感值会导致非常大的热瞬变,这是因为电流在几微秒内就达到了非常高的数值,如图7(a)所示,因此,结温在UIS期间上升非常快,但裸片没有够的时间散掉热量。相反,在高电感值的情况下,电流值较低,如图7(b)所示,并且裸片有足够的时间散掉热量,因此,温度上升平稳。

这个实验结果解释了为什么被测器件D3的EAV随负载电感提高而显着增加的原因,另外,它的裸片面积比SiC MOSFET D1和D2都大。

飞555棋牌游戏最后,在图9中报告了测试条件C的UIS测试结果,测试条件C是封装温度的函数,用热电偶测量封装温度数值。

图9(a)所示是D3在Tc=25°C,90℃和200℃三个不同温度时的VDS和ID波形。不出所料,D1,D2和D3三条线的趋势相似,工作温度越高,引起器件失效的EAV就越低,图9(b)。

image.png

图8:典型D3器件的估算结温Tj对L曲线图。

结论

本文探讨了在SiC MOSFET应用中需要考虑的可能致使功率器件处于雪崩状态的工作条件。为了评估SiC MOSFET的鲁棒性,本文通过实验测试评估了雪崩能量,最后还用三款特性不同的SiC MOSFET做对比测试,定义导致器件失效的最大雪崩能量。雪崩能量与芯片面积成正比,并且是栅极电阻、负载电感和外壳温度的函数。

这种在分立器件上进行的雪崩耐量分析,引起使用电源模块开发应用的设计人员的高度关注,因为电源模块是由许多并联芯片组成,这些芯片的鲁棒性需要高度一致,必须进行专门的测试分析。此外,对于特定的应用,例如,汽车应用,评估雪崩条件下的鲁棒性,可以考虑使用单脉冲雪崩测试和重复雪崩测试方法。这是一个重点课题,将是近期评估活动的目标。

image.png

(a)

image.png

(b)

图9:UIS对Tc的最终测试结果;(a)D3样品在不同的Tc时的VDS和ID典型值;(b)平均失效能量EAV 对TC曲线

参考文献:

[1] F. Wang and Z. Zhang “Overview of Silicon Carbide Technology: Device, Converter, System, and Application,” Power Electr. And Appl. Trans on. CPSS, vol. 1, no. 1, pp. 13-32, December 2016.

[2] S. Ji, Z. Zhang, F. F. Wang “Overview of High Voltage SiC Power Semiconductor Devices: Development and Application,” CES Trans. On Elec. Machines and Systems, vol. 1, no. 3, Sept. 2017, pp.:254-264.

飞555棋牌游戏[3] B. Wang, J. Cai, X.Du and L. Zhou “Review of Power Semiconductor Device Reliability for Power Converters,” CPSS Trans. On  Pow. Elect. and Appl. Vol.2, no.2, pp. 101-117, June2017.

[4] A. Hanif, Y. Yu, D. DeVoto and F.Khan “A Comprehensive Review Toward the State-of-the-Art in Failure and Lifetime Predictions of Power Electronic Devices,” IEEE Trans. On Pow. Elect. vol.34, no.5, pp. 4729- 4746May2019.

[5] B. Mirafzal “Survey of Fault-Tolerance Techniques for Three-Phase Voltage Source Inverters,” IEEE Trans. on Ind. Elec. Vol.61, no.10, pp. 5192-5202, Oct.2014.

[6] F. Richardeau, P. Baudesson, T. A. Meynard “Failures-Tolerance and Remedial Strategies of a PWM Multicell Inverter,” IEEE Trans. Power Elec., vol. 17, no. 6, pp 905-912, Nov.2002.

[7] A. Fayyaz, G. Romano, J. Urresti, M. Riccio, A. Castellazzi, A. Irace, and N. Wright, “A Comprehensive Study on the Avalanche Breakdown Robustness of Silicon Carbide Power MOSFETs”, Energies, vol. 10, no. 4, pp. 452-466, 2017.

[8] M. D. Kelley, B. N. Pushpakaran and Stephen B. Bayne “Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs,” IEEE Trans. On Pow. Elec. Vol. 32, no.8, pp. 6405-6415, Aug. 2017.

[9] I. Dchar, M. Zolkos, C. Buttay, H. Morel “Robustness of SiC MOSFET under Avalanche Conditions”, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC)

[10] N. Ren, H. Hu, K. L. Wang, Z. Zuo, R. Li, K. Sheng “Investigation on Single Pulse Avalanche Failure of 900V SiC MOSFETs” Int. Symp. On Power Semic. Dev. & ICs, May 13-17, 2018.

飞555棋牌游戏[11] J. Wei, S. Liu, S. Li, J. Fang, T. Li, and W. Sun “Comprehensive Investigations on Degradations of Dynamic Characteristics for SiC Power MOSFETs under Repetitive Avalanche Shocks,” IEEE Trans. on Power Elec. Vol.: 34, no: 3, pp. 2748– 2757, March 2019

[12] J. Hu, O. Alatise, J. Angel Ortiz Gonzalez, R. Bonyadi, P. Alexakis, L. Ran and P. Mawby “Robustness and Balancing of Parallel-Connected Power Devices: SiC Versus CoolMOS,” IEEE Trans. On Ind. Elec. Vol. 63, no.4, pp.2092-2102 April 2016.

[13] M. Nawaz “Evaluation of SiC MOSFET power modules under unclamped inductive switching test environment”, Journal of Microelec. Reliability, vol. 63, pp. 97-103, 2016.

[14] H. Chen, D. Divan “High Speed Switching Issues of High Power Rated Silicon-Carbide Devices and the Mitigation Methods” 2015 ECCE, pp.2254-2260.

[15] M. Pulvirenti, L. Salvo, G. Scelba, A.G. Sciacca, M. Nania, G. Scarcella, M. Cacciato, “Characterization and Modeling of SiC MOSFETs Turn On in a Half Bridge Converter” 2019 IEEE En. Conv. Cong. and Expo. (ECCE2019).

[16] M. Pulvirenti, G. Monotoro, M. Nania, R. Scollo, G. Scelba, M. Cacciato, G. Scarcella, L. Salvo “Analysis of Transient Gate-Source OverVoltages in Silicon Carbide MOSFET Power Devices” 2018 IEEE En. Conv. Cong. and Expo. (ECCE2018).

飞555棋牌游戏[17] J. Mari, F. Carastro, M.-J. Kell, P. Losee, T. Zoels “Diode snappiness from a user’s perspective” 2015, 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe).

飞555棋牌游戏[18] R. Wu, F. Blaabjerg, H. Wang, M. Liserre, “Overview of catastrophic failures of freewheeling diodes in power electronic circuits”, Microelectronics Reliability, vol. 53, no.9-11, 2013, pp.:1788-1792.

飞555棋牌游戏[19] Y. Shi, R. Xie, L. Wang, Y. Shi, and H. Li, “Switching Characterization and Short-Circuit Protection of 1200V SiC MOSFET T-Type Module in PV Inverter Application”, IEEE Trans. on Ind. Electron., to be published.

[20] R. Katebi, J.He, N. Weise “An Advanced Three-Level Active Neutral-Point-Clamped Converter With Improved Fault-Tolerant Capabilities,” IEEE Trans. On Power Elect., vol. 33, no.8, pp. 6897-6909, Aug. 2018.



关键词: MOSEFT VDS UIS DUT

评论


相关推荐

技术专区

关闭